4= Spin
) Semiconductor

SPINAsm & FV-1 Instruction Set

Assembler/Downloader for SPIN FV-1 Reverb Chip

22 April 2008
SPN1001-ASM-080422

SpinAsm Software Installation.............cccce e ———— 1

Installed SPINASIM FOIAEIS........coiiiieeeeeeeee 3
SPN1001 USB Development Board Installationccccee e 5
Plugging in the SPINTOOTeeiiiiiiiii ettt et e e e e e s et bt e e e e e e e s e nbbaeeeeeaaessaannnenneeaaans 5
L0 4TaTTa Yo TR o1 = o S 8
The Main TOOIDATot e ettt e e e e e e e e ettt e e e e e eeenaatn e e aaaaeenees 8
The ASSEMDIEr TOOIDAT et e e e e e eat e e e e aaeeees 9
SpinAsm Main Window status bar at the bottom of the SpinAsm wWindow:evvviiiiiiiiiiiiiinnn. 10
Assembly and testing Programssooiiiiiiiiiiii 11
SpinAsm Assembler Errors & Warningsccccceviiiiiiiiiiiii s nn s 13
SPINASM ErrOrs & WaININGSueeeiiieeiiiiitiiiiie e e ettt e e e e sttt et e e e e e s e s nbb e e e e aaaesaaannnbeeeaeaaeeaaann 13
B NINIG S e 14
SPINASM Project MOdEe..........cooeiiiiiieeeeee e e e e e e e e e e nas 17
Preserving Existing Programs in SPN1001 Program MemOrYooccuuiiiiiiaeiiiiiiiiieeee e 19
BUIIAING @ PrOJECL.....coiiiiiiiiiiiiiiiiiii 20
Chip INEEINAIS ..o e e e e e e aaanas 21
REGISIEr BANK ...ceiiiiiiiiiiiiiiii 21
Delay SRAM ...ttt e e e et e et e e e e e s e e n e b e e et e aee e e e e anbrrreeeaaaeeeaanereees 21
L PP 22
O I PP 22
ADC/DAC .. 22
ALU 23
Instruction Line FOrmat............oo it e s 24
Operand data tYPeSccoviiiiiiiiii e —————— 24
Signed fixed POINE VAIUESuiiiiiiiie et e e e e e e e e ee e e e aaeeaaanns 24
Unsigned and SIgNed INTEGEISoviiiiiiiiiiiiiii 25
TR (o] = PSP 25
Assembler StatemMENts nnnnnn 26
L O) = (=Y .41 o | PP 26
MEM SEAtEMENT.....oiiiiiiiiiiiiieeeeeeeeee ettt 27
The FV-1 INStruCtion Set.........ccoeiiiiiiiiiiiiiieieeissessssssssssssssssssesesssssssssssssssssssssesssesssssssssnsnnsnsnnnsnnnnnnnnnn 28
ACCUMUIALOr INSEIUCLIONS ...t e e e e e ettt e e e e e e e e eenta e e e aaaeeeees 30
SOF ..ottt ettt ettt et ettt ettt ettt et a ettt ah e e e e e e e et e aaaraaaaaaaaaaaaaraaaaes 30
AND oot 31

OR...ooeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 32
XOR ..ottt nnnn 33
LOG ..o 34
EXP....ooo 35
SEKP ..ottt ettt ettt ettt ettt ettt ettt e et et ettt e et et t et e eaa e e e aaaaaaaaeaaaaaaaraaraaraaaaes 36
ReiSter INSIIUCIONS.ciiiiiiiiiiiiiiii 38
RDAX .o 38
IVRAX ..ottt et ettt ettt at ettt ittt e a e aaa e aaa e 39
MAXX oo 40
MULX ..o 41
RDFX oo 42

L0 5), OSSP U TS UPPUPPPPRIN 44
Delay Ram INSITUCHIONSooiiiiiiiiiiiiiiiiiiiiei e 45
RDA oot e e ettt e e e e e e ettt et e e e e ettt e eeeeeeannaaes 45
RIMPA. ...t e ettt e e ettt e e e e e ettt e e e e e ettt e e eeeeannaaes 46
IVRA ...ttt et e e e ettt e e e ettt e e e e e ettt e e e e e ettt eaeeeeans 47
IVRAP.coooaaaeeee e ettt e e ettt e e e e ettt e e e ettt e e e e e ettt e e e e e et rteeeeeeeans 48

[L@] 1S3 (4 0o 1] o TR 49
TSoooeeeeeee e ettt et e ettt e e e ettt e e e e e ettt e e e e e e ettt eeeeeeans 49
IRooeeeaeeee et et e e et e ettt e e e e ettt e e e e e ettt e e e e e ettt eeeeeeans 50
U ST P RSO PPPPPPPRURROt 51
CHO RDAoooeeeeeeee e ettt ettt e e e e ettt e e e e e ettt e e e e e e sttt e eaeeeennnnnees 52
CHO SOFooooiiiaee ettt ettt e e e e ettt e e e e ettt e e e e e e ettt eeaeeeennnnanes 54
CHO RDALcccoooiiieeee e ettt ettt e e e e ettt e e e e e ettt e e e e e e ettt eeaeeeeannnanes 55
10 o (o @ o Toto Yo [T PP 56
CLR ..o ettt e e ettt e e e e e ettt e e e e e et bttt e e e e e ettt bteeaeeeeannnaee 56
INOT ..ottt e e e e ettt e e e e ettt e e e e e e e bttt e e e e e e ettt e e eeeeeeannaaes 57
ABSA ...ooieeeeeeee ettt e e e e ettt e e e e e ettt e e e e e ettt teeeeeeans 58
LDAX oot e ettt e e e e e ettt e e e e e e ettt eeeeeennnaaes 59
Predefined SYMDOIS ... 60
L0 1T 14 Vo T= TN o == 62

SpinAsm Software Installation

Web or .msi file install:
Launch SpinSetup.msi from anywhere.
You will see the “SpinAsm IDE Setup Wizard”.

Windows XP:

~iE1x]
Welcome to the SpinAsm IDE Setup Wizard

The ingtaller will guide vou through the steps required toinstall Spindam IDE on your computer.

WARMIMG: This computer pragram is protected by copyright law and international treaties.
IInauthaorized duplication or distribution of this program, or ang partion of it, may result in severe civi
or criminal penalties, and will be prosecuted to the maximum extent pozzible under the law.

Cancel < Back MHext =

Initial SpinAsm software installation dialog.

iié'- Spinfsm IDE 1

Select Installation Folder

T he installer will ingtall Spindam IDE o the follawing folder.

Toinztall in thiz folder, click "Mext”. Toinztall to a different folder. enter it below or click "Browse"',

Folder:
C:AProgram Filez\Spindzm IDEY Browse. ..
Disk Cost...
[nztall Spindsern IDE far yourzelf, or far anvane who uses thiz computer;
* Eveyone
O Just me
Cancel < Back MHewt »

You may install SpinAsm wherever you like. The default “c:\Program Files\SpinAsm IDE” folder is used
during setup unless you enter an install folder by using the “Browse” button or typing it in.

For simplicity, click “Everyone” to install SpinAsm for all users on your computer.
Click “Next” to proceed. The Confirm Installation dialog will be displayed.

Also click “Next” on the “Confirm Installation” dialog to proceed.

@spnasmie i]
Installing SpinAsm IDE

Spindzm IDE iz being installed.

Pleaze wait...

Cancel < Back [et =

This dialog is shown during the installation of SpinAsm’s files to your hard disk.
Once it has completed SpinAsm software will be installed on your computer. Click the “Close” button in
the “Install Complete” window to complete this phase of the installation.

Installed SpinAsm Folders

When the software installation is complete your SpinAsm folder contains the following folders:

Spindsm IDE
I3 ¢_hdrout
I driver
== help

I hesxout
,:] projecks

,:] o

¢_hdrout Default folder for output of “C” source type header files generated from the Project Build
feature.

driver USB driver for the SPN1001-DEVB FV-1 development board.

help SpinAsm help files and other documentation.
hexout Default Folder for Intel© Hex file output from the Project Build feature.

projects Default folder for SpinAsm projects.

spnsrc Default folder for SpinAsm source files.

These default directory settings can be changed in the Setup Dialog box.

SPN1001 USB Development Board Installation

If you have the SPN1001 Development board you will have to install the USB driver for it. The driver is
located in the driver folder of the SpinAsm program folder. For most installations it will be c:\Program
Files\SpinAsm IDE\driver.

The SPN1001 is actually a USB 2.0 device but will work on any USB 1 or 2 host.

Plugging in the SPN1001

Plug the SPN1001 into your computer using a standard USB cable.

Windows will detect the new USB device:

Found Mew Hardware Wizard

Welcome to the Found New
:?- Hardware Wizard

Windaws will zearch far current and updated software by
looking on vour computer, on the hardware inztallation CO, or an
the *indows Update "web site [with your permizzion).

Read our privacy policy

Cat Windows connect ta Windows Update to search far
software?

£ Yes, thiz time only
" “Yes, now and ever time | connect a device
% Mo, not this time

Click Mest ta continue.

« Back I MHext = I Cancel

Click “No, not this time” to allow you to point the installer to the SpinAsm “driver” folder that was created
during the SpinAsm software install.

Click “Next” to proceed.

Found Mew Hardware Wizard

5

Thiz wizard helps you install software far:

Spin Semi SPH1001-DEVE

f:_.‘:lp If your hardware came with an installation CD
L= or Hoppy dizk. insert it now.

What do you want the wizard bo do?

™ |nstall the zoftware automatically [Fecommended)

%' Install from a list or specific location [Advanced]

Click Mest ta continue.

< Back I Mest » I Cancel

Windows knows it is supposed to find the driver for the SPN1001 device. Click on “Install from list or a
specific location”.

Click “Next” to proceed.

Found Mew Hardware Wizard

Pleaze choose your search and installation options.

% Search for the best driver in these locationz,

I1ze the check boxes below to limit or expand the default search, which includes local
pathz and removable media. The best diver found will be inztalled.

™ Search removable media [floppy, CO-ROM...]

V¥ Include this location in the search:

iE:"-.P'ru:ugram FilezhSpindam IDE \driver

i~ Don't gearch. | will chooze the driver ta install

Chiooze this option ta select the device diver from a list, Windows doez not guarantee that
the driver you chooze will be the best match for your hardware.

< Back Mest » Cancel

Set the options up as shown here. If you have installed the program in a different directory then you may
have to use the “Browse” button to select the proper location of the “driver” folder.

Click “Next” to proceed.

The installer’s transfer dialog will pop up and you will see this warning:

Hardware Installation N

] "_l., The saftware you are inztalling far thiz hardware:
]
Spin Semi SPH1001-DEVE

haz not pazzed 'Windows Logao testing ba serify its compatibility
with *windows =P, [Tell me why this testing iz imporkant. |

Continuing your installation of thiz software may impair
or destabilize the correct operation of your system
either immediately or in the future. Microzoft strongly
recommends that you stop thiz installation now and
contact the hardware vendor for software that has
pazzed Windows Logo testing.

Continue Angwal || STOPR Installation l

Click “Continue Anyway” to proceed. The installer will begin transferring files and a dialog will display a
progress bar during copying. When file transfer and installation are complete you will see the following
dialog:

Found Mew Hardware Wizard

Completing the Found New
Hardware Wizard

The wizard haz finizhed installing the zaftware far:

% Spin Semi SPH1001-DEVE

Click Finish ta cloze the wizard.

« Back

Eaneel I

At this point your SPN1001 is ready to use with the SpinAsm IDE to develop and test new programs.

Running SpinAsm

B SpinAsm Shortcut

You can launch SpinAsm from the SpinAsm shortcut located on your desktop or you can go to Start |
Programs | SpinAsm IDE and launch SpinAsm from there.

When SpinAsm starts you will see a blank work surface and two toolbars,

The Main Toolbar

B = R R ST

This toolbar contains the standard file new, file open, file save icons.

P\.
i Go to spinsemi.com

http://www.spinsemi.com/

Open the Project Mode Dialog

|t |

Open the Setup Dialog

The Assembler Toolbar

m:
—

(disabled when no source files are loaded)

Assemble the current source file

CINE=

Show the machine code from the last assembly

SpinAsm Main Window status bar at the bottom of the SpinAsm window:

Ready |SPIN DEY BOARD OFFLIME Lingwooon | [| L
Status bar with SPN1001 disconnected

Ready [Spin Semi SPM1001-DEYE OMLINE lLinesooon | [wumM | 4
Status bar with SPN1001 connected and online

The SpinAsm Status bar at the bottom of the main window displays the following information:

Status of SPN1001 Development Board. Online or Offline.

Progress bars for downloading USB Software to the SPN1001 USB controller

Progress bars for sending SpinAsm assembled programs to SPN1001 Program Memory
Error Messages from Source Code Assembly during development

Editor Line Number in source file being edited.

Keyboard Status

ookl LN =

a. CAP Caps Lock
b. NUM Num Lock
c. SCRL Scroll Lock

7. General program status and error messages from SpinAsm

With the SPN1001 disconnected you are still able to create and assemble programs for the FV-1.

SpinAsm will not attempt to write to the SPN1001 and will simply assemble your program and allow you to
debug it.

10

Assembly and testing programs

You can edit any number of files in SpinAsm at one time simply by loading them in or starting new files.
SpinAsm contains a standard bare bones text editor with a single level of undo’ and simple find and
replace tools.

A M
—==| Assembly Toolbar

ﬁ Assemble Button
(disabled when no source files are loaded)

The file which is in the active window is the file which will be assembled when the Assemble button is
pressed.

Program 0

If you have the SPN1001 development board connected via USB while you assemble SpinAsm will write
the output from a successful assembly to the first program slot (prog 0) of the SPN1001 program
memory..

When the SPN1001 INT — EXT switch is set to EXT the FV-1 will read its programs from the program
memory in the socket on the SPN1001. As you write and test programs you will use program 0 to test and
modify them. Make sure the program selector switch on the SPN1001 is set to program zero.

After a successful write to the SPN1001 program memory the SPN1001 will toggle the FV-1's INT-EXT
line and the FV-1 will load its program memory from the EEProm.

NOTES:

When the SPN1001 is plugged in and on-line SpinAsm will write the output of successful
assemblies into the SPN1001 program memory automatically.

In order to use hear the results this feature you must have the Program Selector switch on
the SPN1001 set to Program 0 and the INT-EXT switch set to EXT.

11

m: |
L—=—"1=1 Assembly Toolbar

SpinAsm Output Window

Once SpinAsm begins assembly of a source file an Output window will open which will display the results
of the assembly.

Program Stats for : C:' Program Files' SpinAsm IDE-"-.,sphsrﬂ,fﬁp.ﬁﬁfif‘

Hl ERRORS

LABELS:

Loc: 2 Label: LOOP

EQUATES:

FLADEL 138 1328

FLADEL 139 1349

RAMP 32

TRI a4

FLAOUT aE

FLADOTT a6

MIX a7

FBE a8

FRACT a9

El 40

K2 41

TEHFE 42

EEVIH 43

REFIL 44

MEMORY HMAP:

FLADEL 0z0000 - 0z01FF =size:0=z0200 (5123
AP1 0=x0201 - 0z0296 =ize:0=xz0096 (150}
APZ (0=x0298 - 0=z0374 =size: 0=xz00DD (2211
AP3 :0=0376 - 0z04CE size:0=x0159 (345)
AP4 :0z04D0 - 0z067E =zize: 0=x01AF (4311
RAPL :0=z0680 - 0=z0BO04 =size:0=x0485 (1157)
RAP1E (0=z0B0Ee - 0xl13D6 size:0=xz08D1 (2257
RARZ ‘0xl13DE8 - 0zlB91 =size: 0xz07BA (1978)
RAPZE 0=z1B93 - 0z2220 size: 0=z068E (1678)
RAF2 Nm22d2 - 0z295E =ize: 0=x0734 (1850}
EAPAE (0=295D - 0z32F4 =ize: 0=x0998 (24560
RAP4 :0=32Fe - 0x37C7 size:0=z04D2 (12343
RAPAE (0m37Cy — 0z3DE? =ize:0=xz061F (1G67)
0l :0=x3DE9 - Ozd466C size: 0=x0884 (21800
L2 0zd6eE - 0=z55El =ize:0=xz0F74 (3958}
03 :0zL5EE3 - Ozee27? size: 0xzl045 (4165)
D4 0z6R29 - 0z7348 =size: 0=z0D80 (3456)
DEAM Memory Unallocated: 3158 bytes=

A successful assembly

As you can see here a list of LABELS, EQUATES,MEMORY allocations and the available (unallocated)
sample memory is displayed.

12

SpinAsm Assembler Errors & Warnings

B[Fas= 2]
<0001>[Pass 2]
<0002:[Pas= 2]
£0002>[Pass 2]
2]
2]

1014] Line: 61 “"rdax fladout. 0.6
1013] Line: 61 “"rdax fladout. 0.6 " - EEROR:Illegal Characters in
1002] Line: 61 "rdax fladout. 0.6
1014] Line: 130 ‘'wrax fladout. 1.0
1013] Line: 130 ‘'wrax fladout., 1.0 " - ERROR:Illegal Character=s in
1002] Line: 130 ‘"wrax fladout. 1.0

<0004>[Pa==
<0005:[Pa==

——rre——

— ERROR: Operand or comma nissing

— ERREOR Cperand or comma nissing

— FLADOUT

— FLADOUT

— ERROR: Tndefined Hame or Forwvard Eeference - F

— Qperand 2
— ERROR: Undefined Hamse or Forward Reference -

— Operand 2

<]

I

Err# Asm Pass ErrID Line Num Source Code Error Description

SpinAsm Error Display

Clicking on any part of an error line will bring you to the source code where the error occurred.

SpinAsm Errors & Warnings

General Error ERR GENERAL
Program Failure ERR PROGRAM FATL
Operand or comma missing ERR NO OPERAND
Calc Error in operand 1 ERR CALCERR
Address out of range ERR DELAYADDR RANGE
Coefficient out of range ERR COEFF RANGE
Address register out of range ERR REGISTER RANGE
Extra operand(s) on line ERR EXTRA OPERAND
Mask bit width out of range ERR MASK RANGE

Too many elements in operand ERR OPERAND SIZE
Bad skip flag USE{ RUN, ZC, Z,GE,N} ERR BAD SKPFLAG
Skip out of range ERR SKIP RANGE

Too Many Math Operators ERR_EXTRA MATHOPS
Illegal Characters in ERR ILLEGAL CHARS
Undefined Name or Forward Reference ERR FORWARD REF
Program Length Exceeds Limit ERR PROGRAM LENGTH
Invalid Equate ERR INVALID NAME
Equate Value Error ERR EQUATE VALUE
Non-Alpha Char can not begin Name ERR NONALPHA START
Bad Lfo Value ERR BAD LFOVAL
Invalid Expression ERR INVALID EXPRESSION
Integer Value out of Range ERR INT RANGE

Name Exists as a Label
Name Exists as Equate
Name Exists as Mem Define

ERR NAME EXISTS AS LABEL
ERR NAME EXISTS AS EQUATE
ERR NAME EXISTS AS MEM

Name Exists as Reserved Word ERR_NAME EXISTS AS RESERVED
Memory Define Error ERR MEMORY ERROR

No Label Text Preceeds Colon ERR NO LABEL

Whitespace in label ERR LABEL WHITESP

SRAM area exceeded ERR SRAM EXCEEDED
Unrecognized or obsolete Opcode ERR BAD OPCODE

FAILED On Pass ERR FATLED PASS
Unimplemented Opcode ERR UNIMPLEMENTED OPCODE

13

Warnings

Redefinition EQU or MEM WARN REDEFINE
Neg & Pos skip flags in SKP Condition WARN SKP FLAGS

14

m:
—

LI

Machine Code Output for : C:\Program Files'Spin&sm IDE,spinsrcCopy of FLA_REY

nooo
oool

oonz
0ons
noo4
0ons
000&
ooy
naoong
noons
o0o1a
0011
no1z
0013
0014

0o1s
NN e
Tick

Assembly Toolbar

Machine Code Button

0002 LOoP:

B0z200011 ‘=kp REUH, LOOP
ooczoni41z cwlds 0, 12, 160
FFEF0244 ‘rdax pot2, 1. 999
00o0004Ae ‘wrax miz=, 0
40000244 crdax potd, 1.0
00000244 ‘nulx pot?
00o0004Ce cwrax fhl, 0O
Zehald4a4d crdax fladout, 0.6
Qo0004Ca ‘mul=x fhl
20000234 crdax adcsl, 0.5
20000244 crdax ador, 0.5
ooooonnz cwra fladel. 0
40000224 crdax potl, 1.0
Q0000224 cmulzx potl
03330040 c=of 0.05, 0.005
ooi0ooon c=of 001, 0
Aninnodnd crdaw ramn 1N
Opcode Source Code

m:
Click the =/

| button If you want to view the actual machine code produced by SpinAsm after an

assembly . SpinAsm will display the machine codes listing in the SpinAsm Output Window. You may copy
the contents of this window into the clipboard by dragging your mouse to select and typing CTRL+C. Or
RIGHT CLICK and Select All and then right click again and select Copy.

Note, in the SpinAsm project mode this feature will only show the results for the last program assembled
in the build. Use it when editing and testing single files as a reference.

15

SpinAsm Setup Dialog

PeHrBERE 70 EE

Main Toolbar

E.

. SpinAsm Setup Dialog

Spindsm Setup _ X|

projects Double Click ko Browse

I Z:\Program Files\Spinasm IDE\projects
SOLFCE
I C:\Program FilesSpindsm IDE spinstc

Fex ouk
I Z:\Program Files\Spindsm IDEY hexout

Z header out
I C:\Program Files! Spindsm IDE Y _hdrout

Reset Al ¥ Sound on Cancel |

SpinAsm Setup Dialog

i}
=
o}
=l

Use the browse buttons to set the folders to your desired locations. See (Installed Folders) for a
description of each of the folders. You can also double-click on the white areas to browse for a folder.

SpinAsm saves these settings in the spinasm.ini file, rather than the registry, in your windows directory.
Sound On

SpinAsm will beep your computer’s speaker when errors occur and at the end of a successful assembly.
Use this checkbox to turn those sounds off. All other system sounds will work the same.

Reset All

Reset All will reset the default folders for SpinAsm just as they were when you installed it. It will also reset
the locations of any SpinAsm windows to their default positions. Use this feature if you have inadvertently
placed the output window or any other off the screen or if you have removed a monitor from your
workstation and can no longer view your output or project windows.

SpinAsm Project Mode

DS 2RE 76 Ew

Main Toolbar

The Project Mode allows you to organize up to 8 FV-1 programs for writing to the EEProm program

. SpinAsm Project Mode Dialog

Example Project.spj ®) #
—Spinfdsmn Projeck
filenarne ¥ Full paths

FROG O I \Program FilesiSpingsm IDE\spinsrcyCHOR._REY. Z.spn

PROG 1 I :\Program Files\spingsm IDEspinsrciFLA_REY Z.5pn

PROG 2 I :\Pragram FilesiSpinasm IDEYspinsrcPITCH 2. 5pn

PROG 3 I CProgram FilestSpingsm IDEYspinsrclPT_ECHD 2.spn

PROG 4 I :'\Program Files\Spingsm IDEYspinsrciREYL_2.spn

PROG 5 I :\Program FilestSpinAsm IDEYspinsrciREYZ 2.5pn

PROG & I ZHProgram FilestSpingsm IDEYspinsrclSUE_BASS 2.spn
AR [1INCHARGED - MO OVERWRITE]

Build ||7 Intel Hex W Source File [Wrike EEFrom Save | Openl

SpinAsm Project Mode Dialog Box.

memory on the SPN1001 development board.

From the project mode dialog you can:

coow

Each entry in the Project Dialog is a filename which represents a SpinAsm source file. There are eight

Load specific FV-1 programs into program slots 1-8

Clear program slots

Direct the build to generate Intel Hex files and C header type source files.
Enable writing the build to the SPN-1001 program memory.

entries corresponding to the eight program slots in the SPN1001 program memory.

When you build your project SpinAsm will load each of the files one at a time and assemble them
automatically. If there are any errors the current build source file will stay open and the SpinAsm output
window will remain open with the list of errors. As in the normal editing mode, clicking on an error will
bring you to the place in the source file where the error is. You can then correct the error and click on the

Build button to rebuild the project.

17

Use the Full Paths checkbox to show only the filenames or the full paths of your source files.

— apindsm Praject
filenarne [~ Full Paths

PROGO | CHOR_REY_2.spn
PROG 1 |FLA_REV_Z.5pn
PROGZ | PITCH_2.5pn
PROG3 |pT_ECHO_2.5pn
PROG 4 |REV1_2.5pn
PROGS |REvz_2.5pn
PROG& | SUB_BASS_2.spn
PROGY | TREM_REY_2.5pn

Full Paths unchecked

Project Mode Right-Click Menu
If you right-click on one of the program slots you will see the following menu:

([lale]

N |
Lopy
Paste
Delete

Select Al

Edit This File
Clear File Entry
Load File Enkry

right-click on a program slot

Load File Entry:

This menu selection will allow you to browse your source code files for a SpinAsm source file for
that slot. The file you select will be assembled and used during a project build.

Clear File Entry:

This menu selection will only be enable if there is a filename in the program slot. Selecting this
':I_Ir'-JIZZHF'.P-JEEEZI - NO OVERWRITE]

will clear the slot back to
see "Preserving Existing Programs".

Edit This File:

The menu selection will only be enabled when there is a file name in the program slot you have
right-clicked on. Selecting Edit This File will open the source file in the editor. If the file is already open it
stays open and is selected for editing.

18

Preserving Existing Programs in SPN1001 Program Memory

When you open a new project all of the program slots will contain the text:

[UMCHANGED - NO OVERWRITE]

When you see the [UNCHANGED — NO OVERWRITE] entry in a program slot it means that when you
build your project it will preserve any programs already in those memory locations in the SPN1001
program memory. This feature enables you to build programs without erasing existing programs in the
SPN1001 you wish to preserve.

NOTE:
If there is no SPN1001 plugged in any program slots with no file name entry will be built

with NOPs. This is because the SPN1001 EEProm will not exist to be read from so
SpinAsm defaults filling those slots with NOPS.

19

Building a Project

Mﬂpmmmxpﬁwm%[-WME%m

Once you have selected all of the files you want in a particular program group you may build them into an
EEProm image and, if your SPN1001 is connected, write that image to the SPN1001 program memory.

Here are the three choices for a program build:

Intel Hex
Write an Intel hex formatted text file of the build. This will always include all 8 program
locations.

Source File
Write a C formatted header type file with array entries for each program.
SpinAsm will separate each program with a new array name.

Write EEProm

If the SPN1001 board is plugged in the build will be written to the onboard EEProm

Select your output choices with the checkboxes and click on the Build button to begin the build. The
SpinAsm Output window will open to display the status of the build procedure.

Spinfsm Log Output - A

EEFRCOH Write Module -
Checling for EEFREOM

Writing EEFPROHM

EEFEOH Tritten

EEPROM Verifwy Module

EEFEOH Read Module

Checlking for EEFROM

Feading EEPRCOM

Fead Complete

VERIFY QOK: EEPEOM Image Matches File
Toggling Program Select =
Build Completed v_I

< =

Successful project build with write enabled

As you can see we’ve kept the output verbose. You will see these messages on the output screen during
a build/write cycle. Should you have problems with your production system this output can be helpful in
debugging it.

20

Chip Internals

The FV-1 contains a rich set of features that allows the developer to create exciting effects. These
features are described below.

Register Bank

The FV-1 has an internal register bank that provides access to the various 1/Os like ADC, DAC, POT
inputs, etc. Additionally it has 32 24-bit registers for use as local registers separate from the delay
memory. The instruction used determines whether the user is accessing the register bank or the delay
memory, instructions that end with and X’ (RDAX, WRAX, etc.) will access the register bank while
instructions that do not end in ‘X’ (RDA, WRA, etc.) access the delay memory. Please see the instruction
set information later in this manual.

Register bank memory map

Address | Name R/W | Comments
0 SINO_RATE w Write SIN 0 frequency coefficient
1 SINO_RANGE w Write SIN 0 range
2 SIN1_RATE w Write SIN 1 frequency coefficient
3 SIN1_RANGE w Write SIN 1 range
4 RMPO_RATE w Write RMP 0 frequency coefficient
5 RMPO_RANGE w Write RMP 0 range
6 RMP1_RATE w Write RMP 1 frequency coefficient
7 RMP1_RANGE w Write RMP 1 range
8 Not used
9 Not used
10 Not used
11 Not used
12 Not used
13 Not used
14 Not used
15 Not used
16 POTO R Read POT 0 input
17 POT1 R Read POT 1 input
18 POT2 R Read POT 2 input
19 Not used
20 ADCL R Read left ADC input
21 ADCR R Read right ADC input
22 DACL w Write left DAC output
23 DACR w Write right DAC output
24 ADDR_PTR w Write address pointer register
25-31 Not used
32-63 | REGO- REG31 R/W | 24-bit general purpose registers

Delay SRAM

The internal SRAM is configured as 32Kx14. Data is stored in a compressed floating point format, it is
expanded to 24-bit fixed point S.23 format after being read and prior to being used in the ALU. The ACC
in the ALU can be written to the SRAM, it is converted to the 14-bit floating point format prior to being
written to SRAM. The SRAM address is generally calculated by adding the address in the instruction to a
down counter that decrements once each sample period and if it is a chorus instruction that is being
executed then also the offset from the LFO. As a result of using a down counter, delays are written to the
lower address and read from the upper address. l.e. if a 20 sample delay is desired it can be
implemented by writing to address 0 and reading from address 20.

21

LFOs

The FV-1 contains two SIN (LFOO0 and LFO1) and two ramp (LFO2 and LFO3) LFOs. The SIN LFOs can
be used for effects such as chorus, ring modulators, flange, etc. The ramps can be used for pitch shifting
up or down. The SIN LFOs produce both an address offset that is added to the address to the SRAM and
a coefficient for use by the ALU multiplier for interpolation between values. The ramp generators generate
an address offset, an interpolation coefficient and a cross-fade coefficient to cross fade between the ramp
exiting one end of the delay and entering the other end. The ramp can generate appropriate wave forms
for pitching up or down based on the sign of the frequency coefficient, positive is pitch up, negative is
pitch down.

Coefficients from the LFOs range from 0 to +1.0

POTs

The chip can read the value of three external potentiometers connected to pins 20, 21 and 22. The pots
can be read with approximately a 10-bit resolution and the values can be used as coefficients in
programs. The values from the POTs ranges from 0 to +0.99...

ADC/DAC
The internal ADCs provides 24-bit values that ranges from -1.0 to +0.99... Values written to the DAC will
also be in the range -1.0 to +0.99...

22

ALU

From PRAM From Registers From ADCs From POTs From LFOs
v V§
i 7 - y
LR
>< = A
v
R N
v
Sat/Limit
v From LFOs From Instruction
IAND/OR/XOR<= YE
v
ACC
V v v
PACC LOG EXP
v v ToDRAM To Registers To DACs

The top ALU adder is 25-bits, the 24-bit data from the ADC/SRAM/etc. is sign extended to 25-
bits. The multiplier is 25-bits by 16-bits. The 16-bit coefficient actually depends on the instruction
being executed. Some instructions only allow for an 11-bit coefficient field, in these cases the
coefficient is 0 padded in its LSBs. The format of the coefficient is 2-comp S1.X where X is 14 for
a 16-bit coefficient and 9 for an 11-bit coefficient. As a result coefficient range is -2.0 to +1.9...

The top 27-bits from the multiplier are fed into the second adder and the result of the second
adder is fed into a saturation-limiter to limit the result to 24-bits in a S.23 format.

The PACC register is the ACC register delayed one state.

23

Instruction Line Format

The general instruction format within a source line is:
[Label:] Opcode (, SubOpcode),Operandl (,Operand2) [;Comment]

As indicated by the square brackets, the label and comment fields are optional. The presence of the
SubOpcode as well as the number and type of operand fields are dependent on the Opcode field and
will be explained in further detail within the description of the FV-1 instruction set.

[Label:]

Labels can be seen as symbolical representations of instruction lines and are intended to be used as an
operand within the SKP instruction. They are allowed either within an instruction line preceding the
Opcode Field or standalone in a separate line. The label length is limited to 32 characters (blanks are
prohibited), the first character must be a letter and each Label must be terminated with a colon.

[;Comment]

Each instruction may be followed by a comment, which must be delimited from the instruction by a
semicolon. Since the assembler will ignore all characters from the semicolon to the end of the line, all
printable characters are allowed within a comment.

Operand data types
SPINAsm will process three basic operand data types:

- Signed fixed point values
- Unsigned integers
- Bitvectors

For all operand data types SPINAsm performs extensive range checking. Whenever SPINAsm
encounters an operand that is out of range, an error message will be displayed indicating the line the
error was detected on.

Signed fixed point values

Signed fixed point values are primarily used as coefficients (Operand2) for the multiply portion of an
instruction. Depending on the actual opcode they may be in one of three different formats, "S1.14", "S1.9"
and "S.10".

"S1.14" means that the 16 bit coefficient has one sign bit (MSB), one integer bit left to the binary point
followed by 14 fractional bits right to the binary point. "S1.9" denotes an 11 bit coefficient which differs
from "S1.14" in that it has fewer bits available to represent the fractional portion of the signed fixed point
value (lower resolution). Last but not least the "S.10" format is also a 11 bit coefficient, however in
comparison to the "S1.9" format its higher fractional resolution comes at the expense of lacking the
integer bit (smaller range). Here's a quick overview regarding range and resolution of the three different
coefficient formats.

Bits Range Resolution (LSB value)
S$1.14 16 -2 to 1.99993896484 0.00006103516
$1.9 11 -2 to 1.998046875 0.001953125

24

S.10 11 -1 to 0.9990234375 0.0009765625

Entry formats

SPINAsm allows one to specify signed fixed point values either as real numbers or directly in
hexadecimal. Real numbers may have a one digit integer portion, a decimal point, multiple fractional
digits and can be prefixed with a "+"or "-" sign. Please note that SPINAsm will round the real decimal
number to the nearest LSB value of the required coefficient format

If signed fixed point values are entered in hexadecimal format, they must be prefixed with a "$" character.
Hex values are always assumed to be right justified which means that leading zeros between the "$"
specifier and the first nonzero digit are optional.

S$1.14

Real -2 -0.00006103516 0 0.00006103516 1.99993896484
Hex $8000 $FFFF $0000 $0001 $7FFF

S$1.9

Real -2 -0.001953125 0 0.001953125 1.998046875
Hex $400 STFF $000 $001 S3FF

S.10

Real -1 -0.0009765625 0 0.0009765625 0.9990234375

Please note "S.10" signed fixed point values cannot be entered in hexadecimal.

Unsigned and signed integers

Unsigned integers are primarily used to specify an address (Operand1) within an instruction. The
(address) range of an unsigned integer is dependent on the actual opcode, specifically whether the
instruction will access the delay ram or the internal register file.

The second application for unsigned integers is to specify the number of instructions to be skipped within
the SKP instruction. In this case the unsigned integer must be entered in decimal.

Entry formats
Unsigned and signed integers may be entered either in decimal or hexadecimal, in the latter case they
must be prefixed by a "$" character.

Bit vectors
The current FV-1 instruction set supports bit vectors of three different sizes: 5-bit, 6-bit and 24-bit as
defined by the individual opcode.

Entry formats

In general bit vectors can be entered in binary representation as a combination of "0" and "1" characters,
prefixed with a "%" character. If entered in binary (MSB first), all elements (bit positions) within the bit
vector must explicitly be declared, that is a %01001 literal for a 6 bit vector is illegal. To enhance
readability especially of 24-bit vectors, underscore characters are allowed after the “%” prefix. Example:
%10110001_11111111_00000001.

The second way of entering bit vectors is in hexadecimal format whereas the hex value is treated as
being right justified. As an example $13 will result in a %010011 pattern if applied to a 6 bit vector.

A third method of entering bit vectors is by ORing values together to set particular bits. As an example,
“4]1” would result in %000101

25

Assembler Statements

EQU Statement

The EQU statement allows one to define symbolic operands in order to increase the readability of the
source code. Technically an EQU statement such as

Name EQU Value [; Comment]

will cause SPINAsm to replace any occurrence of the literal "Name" by the literal "Value" within each
instruction line during the assembly process excluding the comment portion of an instruction line.

With the exception of blanks, any printable character is allowed within the literal "Name". However there
are restrictions: "Name" must be an unique string, is limited to 32 characters and the first character must
be a letter excluding the "+" and "-" signs and the "!" character.

The reason for not allowing these characters being the first character of "Name" is that any symbolic
operand may be prefixed with a sign or the "I" negation operator within the instruction line. The assembler
will then perform the required conversion of the operand while processing the individual instruction lines.

There is another, not syntax related, restriction when using symbolic operands defined by an EQU
statement: Predefined symbols. As given in the end of the manual there is a set of predefined symbolic
operands which should be omitted as "Name" literals within an EQU statement. It is not that these
predefined symbols are prohibited, it is just that using them within an EQU statement will overwrite their
predefined value.

With the literal "Value" things are slightly more complicated since its format has to comply with the
syntactical rules defined for the operand type it is to represent.

Although it is suggested to place EQU statements at the beginning of the source code file, this is not
mandatory. However, the EQU statement has to be defined before the literal "Name" can be used as a
symbolical operand within an instruction line.

Remark:

SPINAsm has no way of performing range checking while processing the EQU statement. This is
because the operand type of value is not known to SPINAsm at the time the EQU statement is processed
. As a result, range checking is performed when assembling the instruction line in which "Name" is to be
replaced by "Value".

Example:
Attn EQU 0.5 ; 0.5 = -6dB attenuation
Tmp_ Reg EQU 63 ; Temporary register within register file
Tmp Del EQU $2000 ; Temporary memory location within delay ram
sof 0,0 ; Clear ACC
rda Tmp Del,Attn ; Load sample from delay ram $2000,
; multiply it by 0.5 and add ACC content
wrax Tmp Reg,1.0 ; Save result to Tmp Reg but keep it in ACC
wrax DACL,O0 ; Move ACC to DAC left (predefined symbol)

; and then clear ACC

If Tmp Del was accidentally replaced by Tmp Reg within the rda instruction line, SPINAsm would
not detect this semantic error — simply because using Tmp Reg would be syntactically correct.

26

If Tmp Reg was mixed up with Tmp Del in the first wrax instruction line, a $2000 value for
referencing an internal register would clearly cause a range check error — an appropriate error message
would be generated.

MEM Statement

The MEM Statement allows the user to partition the delay ram memory into individual blocks.
A memory block declared by the statement

Name MEM Value [;Comment]

can be referenced by "Name" from within an instruction line. "Name" has to comply with the same
syntactical rules previously defined with the EQU statement, "Size" is an unsigned integer in the range of
1 to 32768 which might be entered either in decimal or in hexadecimal.

Besides the explicit identifier "Name" the assembler defines two additional implicit identifiers, "Name# "
and "Name”"". "Name" refers to the first memory location within the memory block, whereas "Name#"
refers to the last memory location. The identifier "Name?" references the middle of the memory block, or
in other words it's center. If a memory block of size 1 is defined, all three identifiers will address the same
memory location. In case the memory block is of size 2, "Name" and "Name”" will address the same
memory location, if the size is an even number the memory block cannot exactly be halved — the midpoint
"Name”" will be calculated as: size MOD 2

Optionally all three identifiers can be offset by a positive or negative integer which is entered in decimal.
Although range checking is performed when using offsets, there is no error generated if the result of the
address calculation exceeds the address range of the memory block. This is also true for those cases in
which the result will "wrap around" the physical 32k boundary of the delay memory. However, a warning
will be issued in order to alert the user regarding the out of range condition.

Mapping the memory blocks to their physical delay ram addresses is solely handled by SPINAsm. The
user has no possibility to explicitly force SPINAsm to place a certain memory block to a specific physical
address range. This of course does not mean that the user has no control over the layout of the delay
ram at all: Knowing that SPINAsm will map memory blocks in the order they become defined within the
source file, the user can implicitly control the memory map of the delay ram.

Example: (might sound awful)
DelR MEM 1024 ; Right channel delay line
Dell MEM 1024 ; Left channel delay line
sof 0,0 ; Clear ACC
rdax ADCL,1.0 ; Read in left ADC
wra DellL, 0.25 ; Save it to the start of the left delay
; line and keep a -12dB replica in ACC
rdax Dell”+20,0.25 ; Add sample from "center of the left delay
; line + 20 samples" times 0.25 to ACC
rdax DellL#,0.25 ; Add sample from "end of the left delay line
; line" times 0.25 to ACC
rdax DellL-512,0.25 ; Add sample from "start of the left delay
; line - 512 samples" times 0.25 to ACC
Remark:

27

At this point the result of the address calculation will reference a sample from outside the "DelL" memory
block. While being syntactically correct, the instruction might not result in what the user intended. In order
to make the user aware of that potential semantic error, a warning will be issued.

wrax DACL,O0 ; Result to DACL, clear ACC

rdax ADCR,1.0 ; Read in right ADC

wra DelR, 0.25 ; Save it to the start of the right delay
; line and keep a -12dB replica in ACC

rdax DelR"-20,0.25 ; Add sample from center of the right delay
; line - 20 samples times 0.25 to ACC

rdax DelR#,0.25 ; Add sample from end of the right delay line
; line times 0.25 to ACC

rdax DelR-512,0.25 ; Add sample from start of the right delay

; line - 512 samples times 0.25 to ACC

Remark:

At this point the result of the address calculation will reference a sample from outside the "DelR" memory
block. And even worse than the previous case: This time the sample be fetched from delay ram address
32256 which will contain a sample that is apx. 1 second old !

Again, syntactically correct but most likely a semantic error — warnings will be issued.

wrax DACR, 0 ; Result to DACR, clear ACC

The FV-1 Instruction Set

The instruction set of the FV-1 processor is divided into five basic groups of instructions:

- Accumulator instructions
- Register instructions

- Delay Ram instructions
- LFOinstructions

- Pseudo opcodes

FV-1 instructions are 32 bits wide. Except for the more specialized LFO instructions as well as the
boolean accumulator instructions, each 32 bit instruction word has to encodes it's 5 bit opcode, a
coefficient and an address specifier.

Within the register instructions only 6 bits are required for addressing the internal register file, the
coefficient is 16 bits wide and the remaining 5 bits are reserved and should be set to 0.

Within the delay ram instructions the address portion occupies 16 bits, (although in the current version of
the chip only the 15 LSBs are used) accordingly the coefficient is limited to 11 bits.

That means that algorithms requiring higher coefficient resolution (such as high Q IIR filters) should
preferably be implemented using the internal general purpose registers as temporary storage locations.

Pseudo opcodes do not add new functionality to the instruction set, all pseudo opcodes could be replaced
by the generic instruction(s) they are based upon. All they do is to combine a generic instruction with a
special parameter to emulate a more specialized function. For example the FV-1 instruction set features a
generic AND MASK function. This one simply performs the "and" function of the current ACC and the

28

specified 24 bit mask. Clearly, if MASK is $000000 then ACC becomes cleared and this is exactly what
the pseudo opcode "CLR" will do.

29

Accumulator instructions

SOF
Mnemonic Operation Instruction coding
SOF C*ACC+D CCCCCCCCCCCCCcccchbbbDDDDDDD01101
Description

SOF will multiply the current value in ACC with C and will then add the constant D to the result.

Please note the absence of an integer entry format for D. This is not by mistake but it should emphasize
that D is not intended to become used for integer arithmetic. The reason for this instruction is that the 11
bit constant D would be placed into ACC left justified or in other words 13 bits shifted to the left.

D is intended to offset ACC by a constant in the range from —1 to +0.9990234375.

Parameters
Name Width Entry formats, range
Real (S1.14)
C 16 Bit Hex ($0000 - $FFFF)
Symbolic
. Real(S.10)
D 11 Bit Symbolic
Syntax
SOF C,D

Coding Example:
off EQU 1.0 ;

; Halve way rectifier —------—-—-

sof 0,0 ;
rdax ADCL,1.0 ;
sof 1.0,-0ff ;
sof 1.0,0ff ;

Clear ACC

Read from left ADC channel
Subtract offset

Add offset

30

AND

Mnemonic Operation Instruction coding
AND ACC & MASK MMMMMMMMMMMMMMMMMMMMMMMMO 00001110
Description

AND will perform a bit wise "and" of the current ACC and the 24-bit MASK specified within the instruction

word.

The instruction might be used to load a constant into ACC provided ACC contains $FFFFFF or to clear
ACC if MASK equals $000000. (see also the pseudo opcode section)

Parameters
Name Width Entry formats, range
Binary
M 24 Bit Hex ($000000 - $FFFFFF)
Symbolic
Syntax
AND M
Coding Example:
AMASK EQU SFOFFFF ;
or SFFFFFF ; Set all bits within ACC
and SFFFFFE ; Clear LSB
and 01111111 11111111 11111111 ; Clear MSB
and AMASK ; Clear ACCI[19..16]
and S0 ; Clear ACC

31

OR

Mnemonic Operation Instruction coding
OR ACC | MASK MMMMMMMMMMMMMMMMMMMMMMMMO 00001111
Description

OR will perform a bit wise "or" of the current ACC and the 24-bit MASK specified within the instruction

word.

The instruction might be used to load a constant into ACC provided ACC contains $000000.

Parameters
Name Width Entry formats, range
Binary
M 24 Bit Hex ($000000 - $FFFFFF)
Symbolic
Syntax
ORM
Coding Example:
OMASK EQU SOF0000 ;
sof 0,0 ; Clear all bits within ACC
or S1 ; Set LSB
or %10000000_00000000_00000000 ; Set MSB
or OMASK ; Set ACC[19..16]
and $S=[15..8] ; Set ACC[15..8]

32

XOR

Mnemonic Operation Instruction coding
XOR ACC * MASK MMMMMMMMMMMMMMMMMMMMMMMMO 00010000
Description

XOR will perform a bit wise "xor" of the current ACC and the 24-bit MASK specified within the instruction
word.
The instruction will invert ACC provided MASK equals $FFFFFF. (see also the pseudo opcode section)

Parameters
Name Width Entry formats, range
Binary
M 24 Bit Hex ($000000 - $FFFFFF)
Symbolic
Syntax
XORM

Coding Example:

XMASK EQU SAAAARA ;

; Clear all bits within ACC

Xor S0 ; Set all ACC bits

XOor %01010101 01010101 01010101 ; Invert all even numbered bits
XOor XMASK ; Invert all odd numbered bits

33

LOG

Mnemonic Operation Instruction coding
LOG C*LOG(JACC|)+D CCCcccceceeeeeccebbbbbbDDDDD01011
Description

LOG will multiply the Base2 LOG of the current absolute value in ACC with C and add the constant D to

the result.

It is important to note that the LOG function returns a fixed point number in S4.19 format instead of the
standard S.23 format, which in turn means that the most negative Base2 LOG value is —16.

The LOG instruction can handle absolute linear accumulator values from 0.99999988 to 0.00001526
which translates to a dynamic range of apx. 96dB.
D an offset to be added to the logarithmic value in the range of —16 to + 15.999998.

Parameters
Name Width Entry formats, range
Real (S1.14)
C 16 Bit Hex ($0000 - $FFFF)
Symbolic
. Real(S4.6)
D 11 Bit Symbolic
Syntax
LOGC,D

Coding Example:

log 1.0,0

34

EXP

Mnemonic Operation Instruction coding
EXP C*EXP(ACC)+D CCccceeceecceccceobbbbbDDDDD01100
Description

EXP will multiply 2*ACC with C and add the constant D to the result.

Since ACC (in it’s role as the destination for the EXP instruction) is limited to linear values from 0 to
+0.99999988, the EXP instruction is limited to logarithmic ACC values (in it’s role as the source operand
for the EXP instruction) from —16 to 0. Like the LOG instruction, EXP will treat the ACC content as a
S4.19 number. Positive logarithmic ACC values will be clipped to +0.99999988 which is the most positive
linear value that can be represented within the accumulator.

D is intended to allow the linear ACC to be offset by a constant in the range from —1 to +0.9990234375

Parameters
Name Width Entry formats, range
Real (S1.14)
C 16 Bit Hex ($0000 - $FFFF)
Symbolic
. Real(S.10)
D 11 Bit Symbolic
Syntax
EXP C,D

Coding Example:

exp 0.8,0

35

SKP

Mnemonic Operation Instruction coding
SKP CMASK N CCCCCNNNNNNOOOOOOO0O0000000010001
Description

The SKP instruction allows conditional program execution. The FV-1 features five condition flags that can
be used to conditionally skip the next N instructions. The selection of which condition flag(s) must be
asserted in order to skip the next N instructions is made by the five bit condition mask “CMASK”. Only if
all condition flags that correspond to a logic "1" within CMASK are asserted are the following N
instructions skipped. The individual bits within CMASK correspond to the FV-1 condition flags as follows:

CMASK Flag Description
The RUN flag is cleared after the program has executed for the first time
b4 RUN after it was loaded into the internal program memory. The purpose of the
RUN flag is to allow the program to initialize registers and LFOs during the
first sample iteration then to skip those initializations from then on.
The ZRC flag is asserted if the sign of ACC and PACC is different, a
b3 ZRC " S .
condition that indicates a Zero Crossing.
b2 ZRO Zis asserted if ACC =0
b1 GEZ GEZ is asserted if ACC >=0
b0 NEG N is asserted if ACC is negative
Parameters
Name Width Entry formats, range
Binary
CMASK 5 Bit Hex ($00 - $1F)
Symbolic
. Decimal (1 —63)
N 6 Bit Label

Maybe the most efficient way to define the condition mask is using it's symbolic representation. In order to
simplify the SKP syntax, SPINAsm has a predefined set of symbols which correspond to the name of the
individual condition flags. (RUN,ZRC,ZRO,GEZ,NEG). Although most of the condition flags are mutually
exclusive, SPINAsm allows you to specify more than one condition flag to become evaluated simply by
separating multiple predefined symbols by the "|" character. Accordingly "skp ZRC|N, 6" would skip the
following six instructions in case of a zero crossing to a negative value.

Syntax

SKP CMASK,N

Coding Example:

; A bridge rectifier

sof
rdax
skp
sof
wrax
rdax
skp

pos:

0,0
ADCL,1.0
GEZ, pos
-1.0,0
DACL, O
ADCL,1.0
N, neg

Clear ACC

Read from left ADC channel

Skip next instruction if ACC >= 0
Make ACC positive

Result to DACL, clear ACC

Read from left ADC channel

; Skip next instruction if ACC < 0

~e

Ne Ne Ne Ne N

36

sof -1.0,0 ; Make ACC negative
pos: wrax 0,DACR ; Result to DACR, clear ACC

37

Register instructions

RDAX
Mnemonic Operation Instruction coding
RDAX C * REG[ADDR] + ACC CCCCCCCCCCCCCCCC00000AAARARARA00100
Description

RDAX will fetch the value contained in [ADDR] from the register file, multiply it with C and add the result
to the previous content of ACC. This multiply accumulate is probably the most popular operation found in
DSP algorithms.

Parameters
Name Width Entry formats, range
Decimal(0 — 63)
ADDR 6 Bit Hex($0 - $3F)
Symbolic
Real (S1.14)
C 16 Bit Hex ($8000 - $0000 - $7FFF)
Symbolic

In order to simplify the RDAX syntax, see the list of predefined symbols for all registers within the FV-1
register file.

Syntax
RDAX ADDR,C

Coding Example:

; Crude mono

~e

sof 0,0
rdax ADCL,0.5
rdax ADCR,0.5

Clear ACC

Get ADCL value and divide it by two
Get ADCR value, divide it by two
and add to the half of ADCL

wrax DACL,1.0 Result to DACL

wrax DACR, 0 ; Result to DACR and clear ACC

Ne Ne Ne Ne N,

~e

38

WRAX

Mnemonic Operation Instruction coding
WRAX ACC->REG[ADDR], C * ACC CCCCCCCCCCCCCCCCO00000AAARARA00110
Description

WRAX will save the current value in ACC to [ADDR] and then multiply ACC by C. This instruction can be
used to write ACC to one DAC channel while clearing ACC for processing the next audio channel.

Parameters
Name Width Entry formats, range
Decimal(0 — 63)
ADDR 6 Bit Hex($0 - $3F)
Symbolic
Real (S1.14)
C 16 Bit Hex ($8000 - $0000 - $7FFF)
Symbolic

In order to simplify the WRAX syntax, see the list of predefined symbols for all registers within the FV-1.

Syntax
WRAX ADDR,C

Coding Example:
; Stero processing ;

rdax ADCL,1.0 Read left ADC into previously cleared ACC

...left channel
processing...
wrax DACL,O0 ; Result to DACL and clear ACC for right
; channel processing

rdax ADCR,1.0 ; Read right ADC into previously cleared ACC

...right channel
processing...

Result to DACR and clear ACC for left
channel processing

wrax DACR, 0

39

MAXX

Mnemonic Operation Instruction coding
MAXX MAX(|REG[ADDR] * C|, |ACC]) CCCCCCCCCCCCCCCC00000ARAARAARA01001
Description

MAXX will compare the absolute value of ACC versus C times the absolute value of the register pointed
to by ADDR. If the absolute value of ACC is larger ACC will be loaded with |ACC]|, otherwise the
accumulator becomes overwritten by |REG[ADDR] * C|.

Parameters
Name Width Entry formats, range
Decimal(0 — 63)
ADDR 6 Bit Hex($0 - $3F)
Symbolic
Real (S1.14)
C 16 Bit Hex ($8000 - $0000 - $7FFF)
Symbolic

In order to simplify the MAXX syntax, see the list of predefined symbols for all registers within the FV-1
register file.

Syntax
MAXX ADDR,C

Coding Example:

; Peak follower

Peak EQU 32 ; Peak hold register
sof 0,0 ; Clear ACC
rdax ADCL,1.0 ; Read left ADC
maxx Peak,1.0 ; Keep larger absolute value in ACC

; For a peak meter insert decay code here...

wrax Peak, 0 ; Save (new) peak and clear ACC

40

MULX

Mnemonic Operation Instruction coding
MULX ACC * REG[ADDR] 000000000000000000000AAAAAA01010
Description

MULX will multiply ACC by the value of the register pointed to by ADDR. An important application of the
MULX instruction is squaring the content of ACC, which combined with a single order LP is especially
useful in calculating the RMS value of an arbitrary waveform.

Parameters
Name Width Entry formats, range
Decimal(0 — 63)
ADDR 6 Bit Hex($0 - $3F)
Symbolic

In order to simplify the MULX syntax, see the list of predefined symbols for all registers within the FV-1
register file.

Syntax
MULX ADDR

Coding Example:

; RMS conversion ;
Tmp LP EQU 32 ; Temporary register for first order LP
sof 0,0 ; Clear ACC

Read left ADC
RMS calculation = ACC"2 -> first order LP

rdax ADCL,1.0

Ne Ne Ne Ne N

mulx ADCL ACC"2
rdfx Tmp LP,x.Xx First order...
wrax Tmp LP,1.0 ...LP filter

; At this point ACC holds the RMS value of the input

41

RDFX

Mnemonic Operation Instruction coding
RDFX (ACC-REGJ[ADDR])*C + REG[ADDR] | CCCCCCCCCCCCCCCCO0000AARARA00101
Description

RDFX will subtract the value of the register pointed to by ADDR from ACC, multiply the result by C and
then add the value of the register pointed to by ADDR. RDFX is an extremely powerful instruction in that it
represents the major portion of a single order low pass filter.

Parameters
Name Width Entry formats, range
Decimal(0 — 63)
ADDR 6 Bit Hex($0 - $3F)
Symbolic
Real (S1.14)
C 16 Bit Hex ($8000 - $0000 - $7FFF)
Symbolic

In order to simplify the RDFX syntax, see the list of predefined symbols for all registers within the FV-1
register file.

Syntax
RDFX ADDR C

Coding Example:

; Single order LP filter
Tmp LP EQU 32 ; Temporary register for first order LP

ldax ADCL ; Read left ADC

rdfx Tmp LP,x.Xx ; First order...

wrax Tmp LP,1.0 ; ...LP filter

wrax DACL, O ; Result to DACL and clear ACC

42

WRLX

Mnemonic Operation Instruction coding
WRLX ACC'>REG[AE1D§A]\’C(CP:ACC'ACC) C CCCCCCCCCCCCCCCC00000ARAARARA01000

Description

First the current ACC value is stored into the register pointed to by ADDR, then ACC is subtracted from
the previous content of ACC (PACC). The difference is then multiplied by C and finally PACC is added to
the result. WRLX is an extremely powerful instruction in that when combined with RDFX, it forms a single
order low pass shelving filter

Parameters
Name Width Entry formats, range
Decimal(0 — 63)
ADDR 6 Bit Hex($0 - $3F)
Symbolic
Real (S1.14)
C 16 Bit Hex ($8000 - $0000 - $7FFF)
Symbolic

In order to simplify the WRLX syntax, see the list of predefined symbols for all registers within the FV-1
register file.

Syntax
WRLX ADDR,C

Coding Example:

; Single order LP shelving filter
Tmp LP EQU 32 ; Temporary register for first order LP

sof 0,0

rdax ADCL,1.0
rdfx Tmp LP,x.x
wrlx Tmp LP,y.y
wrax DACL,1.0

Clear ACC

Read left ADC

First order LP...
...shelving filter

Result to DACL and clear ACC

43

WRHX

Mnemonic Operation Instruction coding

WRHX ACC->REG[ADDR], (ACC*C) + PACC | CCCCCCCCCCCCCCCCO0000RARRARRAO01LL

Description

The current ACC value is stored in the register pointed to by ADDR, then ACC is multiplied by C. Finally
the previous content of ACC (PACC) is added to the product. WRHX is an extremely powerful instruction
in that when combined with RDFX, it forms a single order high pass shelving filter.

Parameters
Name Width Entry formats, range
Decimal(0 — 63)
ADDR 6 Bit Hex($0 - $3F)
Symbolic
Real (S1.14)
C 16 Bit Hex ($8000 - $0000 - $7FFF)
Symbolic

In order to simplify the WRHX syntax, see the list of predefined symbols for all registers within the FV-1
register file.

Syntax
WRHX ADDR,C

Coding Example:

; Single order HP shelving filter
Tmp HP EQU 32 ; Temporary register for first order HP

sof 0,0

rdax ADCL,1.0
rdfx Tmp HP,x.x
wrhx Tmp HP,y.y
wrax DACL,O0

Clear ACC

Read left ADC

First order HP...
...shelving filter

Result to DACL and clear ACC

44

Delay Ram instructions

RDA
Mnemonic Operation Instruction coding
RDA SRAM[ADDR] * C + ACC CCCCCCCCCCCAAARAAAAARAAAAAAAAO0000Q
Description

RDA will fetch the sample [ADDR] from the delay ram, multiply it by C and add the result to the previous
content of ACC. This multiply accumulate is probably the most popular operation found in DSP
algorithms.

Parameters
Name Width Entry formats, range
Decimal(0 — 32767)
ADDR (1)+15 Bit Hex($0 - $7FFF)
Symbolic
Real (S1.9)
C 11 Bit Hex ($400 - $000 - $3FF)
Symbolic
Syntax
RDA ADDR,C

Coding Example:

Delay MEM 1024
Coeff EQU 1.55
Tmp EQU $2000

rda 1000,1.9

rda Delay+20,Coeff
rda Tmp, -2

rda S$TFFF, STFF

Ne Ne Ne Ne Ne Ne Ne N

45

RMPA

Mnemonic Operation Instruction coding
RMPA SRAM[PNTRI[N]] * C + ACC CCCCCCCCceecn00000000001100000001
Description

RMPA provides indirect delay line addressing in that the delay line address of the sample to be multiplied
by C is not explicitly given in the instruction itself but contained within the pointer register ADDR_PTR
(absolute address 24 within the internal register file.)

RMPA will fetch the indirectly addressed sample from the delay ram, multiply it by C and add the result to
the previous content of ACC.

Parameters
Name Width Entry formats, range
Real (S1.9)
C 11 Bit Hex ($400 - $000 - $3FF)
Symbolic
Syntax
RMPA C

Coding Example:

; Crude variable delay line addressing

sof

rdax
wrax
rmpa
wrax

0,0
POT1,1.0
ADDR PTR, 0
1.0

DACL, O

Clear ACC

Read POT1 value

Write value to pointer register, clear ACC
Read sample from delay line

Result to DACL and clear ACC

46

WRA

Mnemonic Operation Instruction coding
WRA ACC->SRAM[ADDR], ACC * C CCCCCCCCCCCAAAAAAAAAAAAAAAAO00LOQ
Description

WRA will store ACC to the delay ram location addressed by ADDR and then multiply ACC by C.

Parameters
Name Width Entry formats, range
Decimal(0 — 32767)
ADDR (1)+15 Bit Hex($0 - $7FFF)
Symbolic
Real (S1.9)
C 11 Bit Hex ($400 - $000 - $3FF)
Symbolic
Syntax
WRA ADDR,C

Coding Example:

Delay MEM 1024 ;
Coeff EQU 0.5 ;

sof 0,0 ; Clear ACC

rdax ADCL,1.0 Read left ADC

wra Delay,Coeff Write to start of delay line, halve ACC
rda Delay#,Coeff Add half of the sample from

the end of the delay line

Result to DACL and clear ACC

~e

Ne Ne Ne N

wrax DACL,O0

47

WRAP

Mnemonic Operation Instruction coding
WRAP ACC->SRAM[ADDR], (ACC*C) + LR | CCCCCCCCCCCAAAAAARAARAAAAAAAAQ00LL
Description

WRAP will store ACC to the delay ram location addressed by ADDR then multiply ACC by C and finally
add the content of the LR register to the product. Please note that the LR register contains the last
sample value read from the delay ram memory. This instruction is typically used for all-pass filters in a
reverb program.

Parameters
Name Width Entry formats, range
Decimal(0 — 32767)
ADDR (1)+15 Bit Hex($0 - $7FFF)
Symbolic
Real (S1.9)
C 11 Bit Hex ($400 - $000 - $3FF)
Symbolic
Syntax

WRAP ADDR,C
Coding Example:
rda apl#,kap ; Read output of all-pass 1 and multiply it by kap

wrap apl,-kap ; Write ACC to input of all-pass 1 and do
; ACC* (-kap)+apl# (apl# is in LR register)

48

LFO instructions

WLDS
Mnemonic Operation Instruction coding
WLDS See Description OONFFFFFFFFFAAAAAAAAAAAAAAALQO0ILO
Description

WLDS will load frequency and amplitude control values into the selected SIN LFO (0 or 1). This
instruction is intended to setup the selected SIN LFO which is typically done within the first sample
iteration after a new program is loaded. As a result WLDS will in most cases be used in combination with
a SKP RUN instruction. For a more detailed description regarding the frequency and amplitude control
values see application note AN-0001.

Parameters
Name Width Entry formats, range
N 1 Bit SIN LFO select: (0, 1)
Decimal(0 — 511)
F 9 Bit Hex ($000 - $1FF)
Symbolic
Decimal(0 — 32767)
A 15 Bit Hex ($0000 - $7FFF)
Symbolic
Syntax
WLDS N,F,A
Coding Example:
Amp EQU 8194 ; Amplitude for a 4097 sample delay line
Freqg EQU 51 ; Apx. 2Hz at 32kHz sampling rate
; Setup SIN LFO O ;
skp run, start ; Skip next instruction if not first iteration
wlds 0, Freqg, Amp ; Setup SIN LFO O

start: sof 0,0 ;

49

WLDR

Mnemonic Operation Instruction coding
WLDR See Description OINFFFFFFFFFFFFFFFF000000AA10010
Description

WLDR will load frequency and amplitude control values into the selected RAMP LFO. (0 or 1) This
instruction is intended to setup the selected RAMP LFO which is typically done within the first sample
iteration after a new program became loaded. As a result WLDR will in most cases be used in
combination with a SKP RUN instruction. For a more detailed description regarding the frequency and
amplitude control values see application note AN-0001.

Parameters
Name Width Entry formats, range
N 1 Bit RAMP LFO select: 0, 1
Decimal(-16384 — 32767)
F 16 Bit Hex ($4000 - $000 - $7FFF)
Symbolic
A 2 Bit Decimal (512, 1024_, 2048, 4096)
Symbolic
Syntax
WLDR N,F.A

Coding Example:

Amp EQU 4096
Freq EQU $100

; Setup RAMP LFO O
skp run, start
wldr O, Freqg, Amp

start: and 0

LFO will modulate a 4096 samples delay line

Skip next instruction if not first iteration

Setup

50

RAMP LFO O

JAM

Mnemonic Operation Instruction coding
JAM 0->RAMP LFO N 0000000000000000000000001N010011
Description

JAM will reset the selected RAMP LFO to its starting point.

Parameters
Name Width Entry formats, range
N 1 Bit RAMP LFO select: 0, 1
Syntax
JAM N

Coding Example:

Jam 0 ; Force ramp 0 LFO to it's starting osition

51

CHO RDA

Mnemonic Operation Instruction coding
CHO RDA See Description 00CCCCCCONNAAAAAAAAAAAAAAAALQOLOO
Description

Like the RDA instruction, CHO RDA will read a sample from the delay ram, multiply it by a coefficient and
add the product to the previous content of ACC. However, in contrast to RDA the coefficient is not
explicitly embedded within the instruction and the effective delay ram address is not solely determined by
the address parameter. Instead, both values are modulated by the selected LFO at run time, for an in
depth explanation please consult the FV-1 datasheet alongside with application note AN-0001. CHO RDA
is a very flexible and powerful instruction, especially useful for delay line modulation effects such as
chorus or pitch shifting.

The coefficient field of the "CHO" instructions are used as control bits to select various aspects of the
LFO. These bits can be set using predefined flags that are ORed together to create the required bit field.
For a sine wave LFO (SINO or SIN1), valid flags are:

SIN COS REG COMPC COMPA

While for a ramp LFO (RMPO and RMP1), valid flags are:
REG COMPC COMPA RPTR2 NA

These flags are defined as:

Flag HEX value Description
SIN $0 Select SIN output (default) (Sine LFO only)
Ccos $1 Select COS output (Sine LFO only)
REG $2 Save the output of the LFO into an internal LFO register.
COMPC $4 Complement the coefficient (1-coeff)
COMPA $8 Complement the address offset from the LFO
RPTR2 $10 Select the ramp+1/2 pointer (Ramp LFO only)
NA $20 Select x-fade coefficient and do not add address offset
Parameters
Name Width Entry formats, range
N 2 Bit LFO select: SINO, SIN1, RMPO, RMP1
. Binary
C 6 Bit Bit flags
Decimal(0 — 32767)
ADDR (1)+15 Bit Hex($0 - $7FFF)
Symbolic
Syntax

CHO RDA\N,C,ADDR
Coding Example:

; A chorus

Delay MEM 4097

Amp EQU 8195
Freq EQU 51

Chorus delay line
Amplitude for a 4097 sample delay line
Apx. 2Hz at 32kHz sampling rate

Ne Ne Ne N

52

; Setup SIN LFO O ;

skp run, start ; Skip if not first iteration
wlds 0, Freqg, Amp ; Setup SIN LFO O
start: ;
sof 0,0 ; Clear ACC
rdax ADCL,0.5 ; Read left ADC * 0.5
wra Delay,1.0 ; Write to chorus delay line
cho rda, SINO,REG|COMPC,Delay” ; See application note AN-0001
cho rda, SINO,,Delay”+1 ; for detailed examples & explanation
wrax DACL, O ; Result to DACL and clear ACC

53

CHO SOF

Mnemonic Operation Instruction coding
CHO SOF See Description 10CCCCCCONNDDDDDDDDDDDDDDDD10100
Description

Like the SOF instruction, CHO SOF will multiply ACC by a coefficient and add the constant D to the
result. However, in contrast to SOF the coefficient is not explicitly embedded within the instruction.
Instead, based on the selected LFO and the 6 bit vector C, the coefficient is picked from a list of possible
coefficients available within the LFO block of the FV-1. For an in depth explanation please consult the FV-
1 datasheet alongside with application note AN-0001. CHO SOF is a very flexible and powerful
instruction, especially useful for the cross fading portion of pitch shift algorithms.

Please see "CHO RDA" for a description of field flags.

Parameters
Name Width Entry formats, range
N 2 Bit LFO select: SINO, SIN1, RMPO, RMP1
. Binary
C 6 Bit Bit flags
D 16 Bit ReaI(S.1_5)
Symbolic
Syntax
CHO SOF,N,C,D
Coding Example:
; Pitch shift
Delay MEM 4096 ; Pitch shift delay line
Temp MEM 1 ; Temporary storage
Amp EQU 4096 ; RAMP LFO amplitude (4096 samples)
Freqg EQU -8192 ; RAMP LFO frequency
; Setup RAMP LFO O ;
skp run, cont ; Skip if not first iteration
wldr O0,Freq,Amp ; Setup SIN LFO O
cont: ;
sof 0,0 ; Clear ACC
rdax ADCL,1.0 ; Read left ADC * 1.0
wra Delay, 0 ; Write to delay line, clear ACC
cho rda,RMPO, COMPC|REG,Delay ; See application note AN-0001
cho rda,RMPO, ,Delay+1 ; for detailed examples & explanation
wra Temp, O ;
cho rda,RMPO, COMPC|RPTR2,Delay ;
cho rda,RMPO,RPTR2,Delay+1l ;
cho sof,RMPO,NA|COMPC, 0 ;
cho rda,RMPO,NA, Temp ;
wrax DACL, O ; Result to DACL and clear ACC

54

CHO RDAL

Mnemonic Operation Instruction coding
CHO RDAL LFO *1->ACC 110000100NNOOOOOOOO0O0O0O0O0O0001I0100
Description

CHO RDAL will read the current value of the selected LFO into ACC.

Parameters
Name Width Entry formats, range
N 2 Bit LFO select: SIN0,COS0,SIN1,COS1,RMP0,RMP1
Syntax
CHO RDAL,N

Coding Example:

cho rdal, SINO
wrax DACL,O0

I

Read LFO SO into ACC

; Result to DACL and clear ACC

55

Pseudo Opcodes

CLR
Mnemonic Operation Instruction coding
CLR 0->ACC 00000000000000000000000000001110
Description

CLR will clear the accumulator.
Parameters None

Syntax
CLR

Coding Example:

clr ; Clear ACC
rdax ADCL,1.0 ; Read left ADC
; ...left channel

; processing...

wrax DACL, O ; Result to DACL and clear ACC

56

NOT

Mnemonic Operation Instruction coding
NOT /ACC -> ACC 111111111117111111111111100010000
Description

NOT will negate all bit positions within accumulator thus performing a 1’'s complement.

Parameters None

Syntax
NOT

Coding Example:

not

Il

57

1's comp ACC

ABSA

Mnemonic Operation Instruction coding
ABSA |ACC| -> ACC 00000000000000000000000000001001
Description

Loads the accumulator with the absolute value of the accumulator.

Parameters None

Syntax
ABSA

Coding Example:

absa

; Absolute value of ACC -> ACC

58

LDAX

Mnemonic Operation Instruction coding
LDAX REG[ADDR]-> ACC 00000000000000000000000000000101
Description

Loads the accumulator with the contents of the addressed register.

Parameters
Name Width Entry formats, range
Decimal(0 — 63)
ADDR 6 Bit Hex($0 - $3F)
Symbolic
Syntax
LDAX REG
Coding Example:
ldax adcl ; ADC left input -> ACC

59

Predefined Symbols

Following is the list of predefined symbols in the SPINAsm assembler:

Symbol Value: hex (dec) Notes
SINO_RATE 0x00 (0) SIN 0 rate
SINO_RANGE 0x01 (1) SIN 0 range
SIN1_RATE 0x02 (2) SIN 1 rate
SIN1_RANGE 0x03 (3) SIN 1 range
RMPQ_RATE 0x04 (4) RMP O rate
RMPO_RANGE | 0x05 (5) RMP 0 range
RMP1_RATE 0x06 (6) RMP 1 rate
RMP1_RANGE | 0x07 (7) RMP 1 range
POTO 0x10 (16) Pot 0 input register
POT1 0x11 (17) Pot 1 input register
POT2 0x12 (18) Pot 2 input register
ADCL 0x14 (20) ADC input register left channel
ADCR 0x15 (21) ADC input register right channel
DACL 0x16 (22) DAC output register left channel
DACR 0x17 (23) DAC output register right channel
ADDR_PTR 0x18 (24) Used with 'RMPA" instruction for indirect read
REGO 0x20 (32) Register 00
REG1 0x21 (33) Register 01
REG2 0x22 (34) Register 02
REG3 0x23 (35) Register 03
REG4 0x24 (36) Register 04
REG5 0x25 (37) Register 05
REG6 0x26 (38) Register 06
REG7 0x27 (39) Register 07
REGS8 0x28 (40) Register 08
REG9 0x29 (41) Register 09
REG10 0x2A (42) Register 10
REG11 0x2B (43) Register 11
REG12 0x2C (44) Register 12
REG13 0x2D (45) Register 13
REG14 0x2E (46) Register 14
REG15 Ox2F (47) Register 15
REG16 0x30 (48) Register 16
REG17 0x31 (49) Register 17
REG18 0x32 (50) Register 18
REG19 0x33 (51) Register 19
REG20 0x34 (52) Register 20
REG21 0x35 (53) Register 21
REG22 0x36 (54) Register 22
REG23 0x37 (55) Register 23
REG24 0x38 (56) Register 24
REG25 0x39 (57) Register 25
REG26 0x3A (58) Register 26
REG27 0x3B (59) Register 27
REG28 0x3C (60) Register 28
REG29 0x3D (61) Register 29
REG30 0x3E (62) Register 30
REG31 0x3F (63) Register 31
SINO 0x00 (0) USED with 'CHOQO' instruction: SINE LFO 0

60

SIN1 0x01 (1) USED with 'CHQ' instruction: SINE LFO 1

RMPO 0x02 (2) USED with 'CHOQO' instruction: RAMP LFO 0

RMP1 0x03 (3) USED with 'CHOQ' instruction: RAMP LFO 1

RDA 0x00 (0) USED with 'CHOQO' instruction: ACC += (SRAM * COEFF)

SOF 0x02 (2) USED with 'CHO' instruction: ACC = (ACC * LFO COEFF) +
Constant

RDAL 0x03 (3) USED with 'CHO' instruction: Reads value of selected LFO
into the ACC

SIN 0x00 (0) USED with 'CHOQ' instruction: SIN/COS from SINE LFO

COSs 0x01 (1) USED with 'CHOQ' instruction: SIN/COS from SINE LFO

REG 0x02 (2) USED with 'CHQ' instruction: Save LFO temp reg in LFO block

COMPC 0x04 (4) USED with 'CHO' instruction: 2's comp : Generate 1-x for
interpolate

COMPA 0x08 (8) USED with 'CHO' instruction: 1's comp address offset
(Generate SIN or COS)

RPTR2 0x10 (16) USED with 'CHO' instruction: Add 1/2 to ramp to generate 2nd
ramp for pitch shift

NA 0x20 (32) USED with 'CHO' instruction: Do NOT add LFO to address and
select cross-fade coefficient

RUN 0x80000000 USED with 'SKP' instruction: Skip if NOT FIRST time through
program

ZRC 0x40000000 USED with 'SKP" instruction: Skip On Zero Crossing

ZRO 0x20000000 USED with 'SKP" instruction: Skip if ACC = 0

GEZ 0x10000000 USED with 'SKP" instruction: Skip if ACC is' >= 0’

NEG 0x8000000 USED with 'SKP' instruction: Skip if ACC is Negative

61

Change Notes

11 July 2006: First release

28 August 2006: Fixed Typo in "cho rdal" example, change "S0" to "SINO"

15 November 2006: Added COSX to "cho rdal" to allow COS outputs to be read as well as SIN,
SpinAsm updated to support syntax.
Fixed other instances of SX/RX to SINX/RMPX
DRAM references updated to SRAM

22 April 2008: Fixed JAM instruction, typo in SpinAsm doc and assembly error in SpinAsm.

62

Notice

Spin Semiconductor reserves the right to make changes to, or to discontinue availability of, any product
or service without notice.

Spin Semiconductor assumes no liability for applications assistance or customer product design.
Customers are responsible for their products and applications using any Spin Semiconductor product or
service. To minimize the risks associated with customer products or applications, customers should
provide adequate design and operating safeguards.

Spin Semiconductor make no warranty, expressed or implied, of the fitness of any product or service for
any particular application.

Contact Information

Spin Semiconductor
Phone: (310) 417-4956
Web: www.spinsemi.com

Mailing:

Spin Semiconductor
c/o OCT Distribution
6504 1/2 Arizona Ave.
Los Angeles, CA 90045

© 2008 Spin Semiconductor
All Rights Reserved

